# The measure of (Angle) A is 4 degrees greater than the measure of (Angle) B. The two angles are complementary. Find the measure of each angle.

(I tried 41+45 but that didn't work out, anyone got any steps to solve this?)

## let the smaller be x

then the larger is x+4

so x + x+4 = 90

2x = 86

x = 43

so how about 43 and 47.

Did you skip that pair ? You knew the were only 4 apart, so just about equal and half of 90 is 45 , so ....

## Ms. Sue, I'm very well aware a complementary angle is 90 degrees. But I need help with HOW to get 90. Should I just try various methods and guess?

## gj

## To solve this problem, let's start by assigning variables to the unknown angles. Let's say that the measure of Angle B is x degrees.

According to the problem, the measure of Angle A is 4 degrees greater than Angle B. So, the measure of Angle A can be expressed as (x + 4) degrees.

The problem also states that the two angles are complementary. Complementary angles add up to 90 degrees.

So, we can set up the equation:

x + (x + 4) = 90

Now, let's solve for x to find the measure of Angle B:

2x + 4 = 90 (combine like terms)

2x = 86 (subtract 4 from both sides)

x = 43 (divide both sides by 2)

Now that we have the measure of Angle B, we can find the measure of Angle A:

A = x + 4

A = 43 + 4

A = 47

Therefore, the measure of Angle B is 43 degrees, and the measure of Angle A is 47 degrees.

## https://www.google.com/search?source=hp&ei=3hEKWva8CMqijwTy_Y-YAw&q=complementary+angles&oq=+complementary&gs_l=psy-ab.1.0.0l10.3163.3163.0.7302.1.1.0.0.0.0.104.104.0j1.1.0....0...1.1.64.psy-ab..0.1.103....0.yxRV7Raahts

## OH WAIT, I tried this method.

90 - 4 = 86/2 = 43 + 47

Should I use this for future purposes?