# This time I have two questions:

#1.A recording engineer works in a soundproofed room that is 49.7 dB quieter than the outside. If the sound intensity in the room is 2.66 x 10-10 W/m2, what is the intensity outside?

#2.A listener increases his distance from a sound source by a factor of 3.86. Assuming that the source emits sound uniformly in all directions, what is the change in the sound intensity level?

can i plz get some help?

2: Change in intensity level= 1/3.86^2
Now if you want it in db, it is -10log 1/3.86 db or 5.86 db less intense.

1: 49.7 = 10log (I/Io)

I/Io= 10^4.97
I= 2.66 x E-10 * 9.33E4

8 years ago

## 1. db = 10*Log (I/Io) =

10*Log (2.66*10^-10/1*10^-12) =
10*Log (266) = 24.2 db Inside.

Outside sound intensity level =
24.2 + 49.7 = 73.9 db.

db=10*Log I/Io=10*Log(I/10^-12)=73.9
10*Log (I/10^-12) = 73.9.
Log (I/10^-12) = 7.39.
I/10^-12 = 10^7.39. = 24.55*10^6.
I = 2.46*10^-5 W/m^2.

8 months ago

## For the first question:

To find the intensity outside the soundproofed room, we can use the formula:

I/Io = 10^(dB/10)

Where I/Io is the ratio of the intensity inside the room (I) to the intensity outside the room (Io), and dB is the difference in decibels.

In this case, we have:

I/Io = 10^(49.7/10)

I/Io = 10^4.97

Now, we can solve for the intensity outside (Io):

Io = I / (10^4.97)

Io = 2.66 x 10^(-10) / (10^4.97)

Io â‰ˆ 2.66 x 10^(-10) * 9.33 x 10^(-5)

Io â‰ˆ 2.48 x 10^(-14) W/m^2

So, the intensity outside the soundproofed room is approximately 2.48 x 10^(-14) W/m^2.

Now, for the second question:

To calculate the change in sound intensity level when the listener increases their distance from the sound source, we can use the formula:

Change in intensity level = -10log(I/Io)

Where I/Io is the ratio of the new intensity (I) to the initial intensity (Io).

In this case, the listener increases their distance by a factor of 3.86, so the ratio of new intensity to initial intensity is (1/3.86)^2.

Using the formula:

Change in intensity level = -10log((1/3.86)^2)

Change in intensity level = -10log(1/(3.86^2))

Change in intensity level â‰ˆ -10log(1/14.8996)

Change in intensity level â‰ˆ -10log(0.0672)

Change in intensity level â‰ˆ -10(-1.173)

Change in intensity level â‰ˆ 11.73 dB less intense

So, the change in sound intensity level is approximately 11.73 dB less intense.

7 months ago

#1. To find the intensity outside the soundproofed room, we can use the equation:

I/Io = 10^(dB/10)

In this case, we know that the soundproofed room is 49.7 dB quieter than the outside. The sound intensity in the room is given as 2.66 x 10^-10 W/m^2.

Plugging in these values, we have:

I/Io = 10^(49.7/10)

Calculating this, we find that I/Io is approximately 9.33 x 10^4.97.

Now, to find the intensity outside (I), we multiply the known intensity inside the room (2.66 x 10^-10 W/m^2) by the value of I/Io:

I = (2.66 x 10^-10) * 9.33 x 10^4.97

Evaluating this calculation, we obtain the intensity outside the soundproofed room.

#2. To determine the change in sound intensity level when the listener increases their distance from the sound source by a factor of 3.86, we'll use the fact that sound intensity falls off with the square of the distance.

The change in intensity level is given by the equation:

Change in intensity level = -10 * log10(1/factor^2)

In this case, the factor is 3.86. Plugging this into the equation, we have:

Change in intensity level = -10 * log10(1/3.86^2)

Evaluating this expression, we find that the change in intensity level is approximately 5.86 dB less intense.

I hope this helps! Let me know if you have any further questions.

🤔 🤔 Ask a New Question 🤔 🤔