Which of these graphs shows that the linear system −2x+y=6 and 4x−2y=−12 has an infinite number of solutions?(1 point)

Responses

A coordinate plane with 4 quadrants shows x and y axes ranging from negative 10 to 10 in unit increments. A line is plotted on the plane. An upward slanting line with arrows at both ends passes through the points left parenthesis 0 comma negative 6 right parenthesis and left parenthesis 3 comma 0 right parenthesis.
Image with alt text: A coordinate plane with 4 quadrants shows x and y axes ranging from negative 10 to 10 in unit increments. A line is plotted on the plane. An upward slanting line with arrows at both ends passes through the points left parenthesis 0 comma negative 6 right parenthesis and left parenthesis 3 comma 0 right parenthesis.

A coordinate plane with 4 quadrants shows x and y axes ranging from negative 10 to 10 in unit increments. A line is plotted on the plane. An upward slanting line with arrows at both ends passes through the points left parenthesis negative 3 comma 0 right parenthesis and left parenthesis 0 comma 6 right parenthesis.
Image with alt text: A coordinate plane with 4 quadrants shows x and y axes ranging from negative 10 to 10 in unit increments. A line is plotted on the plane. An upward slanting line with arrows at both ends passes through the points left parenthesis negative 3 comma 0 right parenthesis and left parenthesis 0 comma 6 right parenthesis.

A coordinate plane with 4 quadrants shows x and y axes ranging from negative 10 to 10 in unit increments. Two intersecting lines are plotted on the plane. A solid upward slanting line with arrows at both ends passes through the points left parenthesis negative 3 comma 0 right parenthesis and left parenthesis 0 comma 6 right parenthesis. A dotted upward slanting line passes through the points left parenthesis 0 comma 6 right parenthesis and left parenthesis 1 comma 7 right parenthesis.
Image with alt text: A coordinate plane with 4 quadrants shows x and y axes ranging from negative 10 to 10 in unit increments. Two intersecting lines are plotted on the plane. A solid upward slanting line with arrows at both ends passes through the points left parenthesis negative 3 comma 0 right parenthesis and left parenthesis 0 comma 6 right parenthesis. A dotted upward slanting line passes through the points left parenthesis 0 comma 6 right parenthesis and left parenthesis 1 comma 7 right parenthesis.

A coordinate plane with 4 quadrants shows x and y axes ranging from negative 10 to 10 in unit increments. Two parallel lines are plotted on the plane. A dotted upward slanting line with arrows at both ends passes through the points left parenthesis negative 3 comma 0 right parenthesis and left parenthesis 0 comma 6 right parenthesis. A solid upward slanting line with arrows at both ends, parallel to the dotted line, passes through origin.
Image with alt text: A coordinate plane with 4 quadrants shows x and y axes ranging from negative 10 to 10 in unit increments. Two parallel lines are plotted on the plane. A dotted upward slanting line with arrows at both ends passes through the points left parenthesis negative 3 comma 0 right parenthesis and left parenthesis 0 comma 6 right parenthesis. A solid upward slanting line with arrows at both ends, parallel to the dotted line, passes through origin.
Skip to navigation
page 19 of 19

The graph that shows an infinite number of solutions for the linear system −2x+y=6 and 4x−2y=−12 is the one with two intersecting lines, where the solid line passes through the points (-3, 0) and (0, 6) and the dotted line passes through the points (0, 6) and (1, 7). This indicates that the two lines are overlapping, showing that there are infinite solutions for the system.