why is it important to use the order of operation in mathmatics

It's one of those rules in math. You just HAVE to do it. The Order of Operations is PEMDAS. P- Parenthases, E-exponents, M- Multiplication, D-Division, A-Addition, and S-Subtraction.

NOOOOO that's all wrongg

how to solve the ineqality for 2/3(7/8-4x)-5/8<3/8

The order of operations is crucial in mathematics because it establishes a set of rules for performing calculations in a consistent and unambiguous way. Without it, different people may arrive at different answers for the same mathematical expression, leading to confusion and errors. Here's why it's important to use the order of operations:

1. Clarity: The order of operations ensures that mathematical expressions are written and evaluated in a clear and unambiguous manner. Each operation has a specific precedence, which eliminates any ambiguity about which operation to perform first.

2. Accuracy: Following the order of operations helps in achieving accurate results. The rules dictate the correct sequence of operations to be carried out. If you mix up the order, you risk obtaining an incorrect answer.

3. Standardization: The purpose of the order of operations is to establish a standard way of evaluating mathematical expressions. It ensures that everyone, regardless of their mathematical background or language, arrives at the same answer for a given expression.

The commonly accepted order of operations is as follows:

1. Parentheses: Evaluate expressions within parentheses first.
2. Exponents: Calculate the values of any exponents or powers.
3. Multiplication and Division: Perform multiplication and division from left to right.
4. Addition and Subtraction: Perform addition and subtraction from left to right.

By following these rules, you can ensure consistency, accuracy, and clarity in mathematical calculations.