Apply the Property of Negative Integer Exponents to solve 3^−4 . The answer should not contain any exponent expression or decimals.

To apply the property of negative integer exponents, we use the following rule:

$$a^{-n} = \frac{1}{a^n}$$

Using this rule, we can solve the expression 3^(-4):

$$3^{-4} = \frac{1}{3^4}$$

And finally:

$$3^{-4} = \frac{1}{81}$$

Apply the Property of Negative Integer Exponents to generate an expression equivalent to 7−3⋅7−5 with positive exponents only.(1 point)

To apply the property of negative integer exponents, we use the following rule:

$$a^{-n} = \frac{1}{a^n}$$

Using this rule for the expression $7^{-3} \cdot 7^{-5}$, we can rewrite it as:
$$\frac{1}{7^3} \cdot \frac{1}{7^5}$$

To simplify this expression further, we multiply the fractions:

$$\frac{1}{7^3} \cdot \frac{1}{7^5} = \frac{1}{7^{3+5}}$$

Now we can simplify the exponent:

$$\frac{1}{7^{3+5}} = \frac{1}{7^8}$$

So, an expression equivalent to $7^{-3} \cdot 7^{-5}$ with positive exponents only is $1/7^8$.

Apply the Property of Negative Integer Exponents to generate an expression equivalent to 5−94−12 with positive exponents only.(1 point)

To apply the property of negative integer exponents, we use the following rule:

$$a^{-n} = \frac{1}{a^n}$$

Using this rule for the expression $5^{-9} \cdot 4^{-12}$, we can rewrite it as:
$$\frac{1}{5^9} \cdot \frac{1}{4^{12}}$$

Now we need to simplify the exponents:

$$\frac{1}{5^9} \cdot \frac{1}{4^{12}} = \frac{1}{5^9} \cdot \frac{1}{(2^2)^{12}} = \frac{1}{5^9} \cdot \frac{1}{2^{24}}$$

And finally, we can write the expression with positive exponents only:

$$\frac{1}{5^9} \cdot \frac{1}{2^{24}} = \frac{1}{(5^9) \cdot (2^{24})}$$

Therefore, an expression equivalent to $5^{-9} \cdot 4^{-12}$ with positive exponents only is $1/(5^9 \cdot 2^{24})$.

incorrect

I apologize for the mistake. Let's correct the solution.

To apply the property of negative integer exponents, we use the following rule:

$$a^{-n} = \frac{1}{a^n}$$

Using this rule for the expression $5^{-9} \cdot 4^{-12}$, we can rewrite it as:

$$\frac{1}{5^9} \cdot \frac{1}{4^{12}}$$

Now we need to simplify the exponents:

$$\frac{1}{5^9} \cdot \frac{1}{4^{12}} = \frac{1}{5^9} \cdot \frac{1}{(2^2)^{12}} = \frac{1}{5^9} \cdot \frac{1}{2^{24}}$$

To simplify this further, we can rewrite $2^{24}$ as $(2^6)^4$:

$$\frac{1}{5^9} \cdot \frac{1}{2^{24}} = \frac{1}{5^9} \cdot \frac{1}{(2^6)^4}$$

Now we can apply the property again and simplify the exponents:

$$\frac{1}{5^9} \cdot \frac{1}{(2^6)^4} = \frac{1}{5^9} \cdot \frac{1}{2^{6 \cdot 4}}$$

$$ = \frac{1}{5^9} \cdot \frac{1}{2^{24}}$$

Therefore, an expression equivalent to $5^{-9} \cdot 4^{-12}$ with positive exponents only is $1/(5^9 \cdot 2^{24})$.