Given that tan 75°=2+√3,without using a table or a calculator,determine 5tan15° leaving your answer in the form a+b√c

Sorry -- wrong again.

tan 75°=2+√3
Now, tan75° = tan(90°-15°), but we can;t use that, since tan90° is undefined.
However, cot75° = 1/(2+√3) = 2-√3, so
cot75° = (1 + cot90°cot15°)/(cot90° - cot15°) = -1/cot15°
so cot15° = -1/cot75° = -1/(2-√3) = 2+√3
thus, tan15° = 1/cot15° = 11/(2+√3) = 2-√3
so 5tan15° = 10 - 5√3

You're correct, my previous response was incorrect. I apologize for the confusion.

The correct solution is as follows:

Given that $\tan 75°=2+\sqrt{3}$, we can rewrite this as $\tan (45°+30°) = \tan 45° + \tan 30° \cdot (1 + \tan 45°)$.

We know that $\tan 45° = 1$ and $\tan 30° = \frac{1}{\sqrt{3}}$. Substituting these values, we have $\tan 75° = 1 + \frac{1}{\sqrt{3}} \cdot (1 + 1) = 1 + \frac{2}{\sqrt{3}} = 2 + \sqrt{3}$.

Now, we want to find $\tan 15°$. We can use the identity $\tan (2\theta) = \frac{2\tan \theta}{1 - \tan^2 \theta}$.

Let $\theta = 15°$. Then $\tan (2\theta) = \tan 30° = \frac{1}{\sqrt{3}} = \frac{2\tan \theta}{1 - \tan^2 \theta} = \frac{2\tan 15°}{1 - \tan^2 15°}$.

Solving for $\tan 15°$, we have $\tan 15° = \sqrt{3} - 1$.

Now, we can find $5\tan 15°$ as $5\tan 15° = 5(\sqrt{3} - 1) = \boxed{5\sqrt{3} - 5}$.

To find 5tan(15°) without using a table or calculator, we can use trigonometric identities and properties.

First, let's recall the identity for the tangent of the sum of two angles: tan(A + B) = (tanA + tanB)/(1 - tanA * tanB).

We can rewrite 15° as the sum of 45° and -30°: 15° = 45° + (-30°).

Using the given information, tan(75°) = 2 + √3, we can rewrite tan(45°), tan(-30°), and tan(15°) based on their relationships.

tan(45°) = 1 (known value)
tan(-30°) = -tan(30°) = -√3/3 (from the unit circle or trigonometric ratios)
tan(75°) = tan(45° + 30°) = (tan45° + tan30°)/(1 - tan45° * tan30°)

Substituting the known values into the formula, we have:
(2 + √3) = (1 + (-√3/3))/(1 - 1 * (-√3/3))

Let's simplify the equation:
(2 + √3) = (1 - √3/3)/(1 + √3/3)
(2 + √3) = (3 - √3)/(3 + √3) (multiply numerator and denominator by 3)

Next, cross-multiply to eliminate the denominators:
(2 + √3)(3 + √3) = (3 - √3)(3 + √3)
(6 + 3√3 + 3√3 + (√3)^2) = (9 - (√3)^2)
(6 + 6√3 + 3) = (9 - 3)
9 + 6√3 = 6
6√3 = 6 - 9
6√3 = -3
√3 = -1/2

Now, let's determine 5tan(15°):
Using the identity tan(15°) = tan(45° - 30°) = (tan45° - tan30°)/(1 + tan45° * tan30°)

We know that tan(45°) = 1 and tan(30°) = 1/√3.

Substituting into the formula:
5tan(15°) = 5(tan45° - tan30°)/(1 + tan45° * tan30°)
= 5(1 - 1/√3)/(1 + (1)(1/√3))
= 5(√3 - 1)/(√3 + 1)

To rationalize the denominator, multiply both numerator and denominator by (√3 - 1):
5(√3 - 1)(√3 - 1)/(√3 + 1)(√3 - 1)
= 5(3 - 2√3 + 1)/(√3^2 - 1)
= 5(4 - 2√3)/2
= 10 - 10√3

Therefore, 5tan(15°) = 10 - 10√3 (in the form a + b√c).

We can use the identity $\tan(2\theta)=\frac{2\tan(\theta)}{1-\tan^2(\theta)}$.

Let $\theta=15°$. Then $\tan(2\theta)=\tan(30°)=\frac{1}{\sqrt{3}}=\frac{2\tan(\theta)}{1-\tan^2(\theta)}=\frac{2\tan(15°)}{1-\tan^2(15°)}$.

Solving for $\tan(15°)$, we have $\tan(15°)=\sqrt{3}-1$.

To determine $5\tan(15°)$, we have $5\tan(15°)=5(\sqrt{3}-1)=\boxed{5\sqrt{3}-5}$.