# Write an explicit formula for a_na

n

,the n^{\text{th}}n

thterm of the sequence 5, 15, 25, ...5,15,25,....

## Write an explicit formula for a_na

n

, the n^{\text{th}}n

th

term of the sequence 1, 5, 25, ..

## The given sequence is an arithmetic sequence with a common difference of 10.

To find the explicit formula for the nth term (a_n), we can use the formula for nth term of an arithmetic sequence:

a_n = a_1 + (n - 1)d

Where a_1 is the first term of the sequence, d is the common difference, and n is the position of the term we want to find.

In this case, the first term of the sequence (a_1) is 5 and the common difference (d) is 10.

Plugging these values into the formula, we get:

a_n = 5 + (n - 1) * 10

Simplifying further:

a_n = 5 + 10n - 10

a_n = 10n - 5

So, the explicit formula for the nth term of the sequence 5, 15, 25, ... is a_n = 10n - 5.

## To find the explicit formula for a_na

, the n

th term of the sequence 5, 15, 25, ..., we need to observe the pattern and derive a general formula.

From the given sequence, we can see that each term is obtained by adding 10 to the previous term. So, we can express this relationship as:

a_n = a_{n-1} + 10

To find the first term of the sequence, we can substitute n = 1 into the formula. Since the first term is given as 5, we have:

a_1 = a_{1-1} + 10

5 = a_0 + 10

Next, we solve for a_0. Subtracting 10 from both sides gives us:

-5 = a_0

So, we have found the value of a_0 as -5.

Now, we can rewrite the formula for a_n with the initial term:

a_n = -5 + 10n

Therefore, the explicit formula for a_na

, the n

th term of the given sequence, is:

a_n = -5 + 10n

## if a = 15 and d = 10

Tn = a + d(n-1)