A video streaming company offers two monthly plans.

Plan A: $3 per video viewed, plus a flat rate of $8 per month
Plan B: $5 per video viewed and no additional flat rate

A. Write an inequality to determine when the cost of viewing n videos using Plan A is less than the cost of viewing n videos using Plan B.

Question ID
1648789

Answers
10

Created

Rating
5

URL
https://questions.llc/questions/1648789

Views
3,624

8+3n<5n

Answer ID
2042968

Created

Rating
4

URL
https://questions.llc/questions/1648789#answer-2042968

yall didnt even help

Answer ID
1889316

Created

Rating
3

URL
https://questions.llc/questions/1648789#answer-1889316

When you plug in the equation, plan A is less expensive at 5 videos.

Answer ID
2059576

Created

Rating
3

URL
https://questions.llc/questions/1648789#answer-2059576

steve sup man its alex from minecraft. Were relevant again. Hopefully you see this default skin gang for life

Answer ID
1889077

Created

Rating
1

URL
https://questions.llc/questions/1648789#answer-1889077

someone answer the question

Answer ID
2034795

Created

Rating
1

URL
https://questions.llc/questions/1648789#answer-2034795

12

Answer ID
2061181

Created

Rating
1

URL
https://questions.llc/questions/1648789#answer-2061181

well, the plans charge

A: 8 + 3n
B: 5n

so, what's next?

Answer ID
1648886

Created

Rating
0

URL
https://questions.llc/questions/1648789#answer-1648886

To determine when the cost of viewing n videos using Plan A is less than the cost of viewing n videos using Plan B, we need to compare the costs of the two plans.

Let's denote the cost of viewing n videos using Plan A as A(n) and the cost of viewing n videos using Plan B as B(n).

For Plan A, the cost per video viewed is $3. Therefore, the cost of viewing n videos using Plan A is 3n. Additionally, there is a flat rate of $8 per month, regardless of the number of videos viewed. Therefore, the total cost of viewing n videos using Plan A is A(n) = 3n + 8.

For Plan B, the cost per video viewed is $5. Therefore, the cost of viewing n videos using Plan B is 5n. Since there is no additional flat rate, the total cost of viewing n videos using Plan B is B(n) = 5n.

To determine when the cost of viewing n videos using Plan A is less than the cost of viewing n videos using Plan B, we can set up the following inequality:

A(n) < B(n)
3n + 8 < 5n

Simplifying the inequality:

8 < 2n

Dividing both sides by 2:

4 < n

Therefore, the inequality to determine when the cost of viewing n videos using Plan A is less than the cost of viewing n videos using Plan B is n > 4.

Answer ID
4071586

Created

Rating
0

URL
https://questions.llc/questions/1648789#answer-4071586

What the feather tricking flipflop is the next step?

Answer ID
1865866

Created

Rating
-1

URL
https://questions.llc/questions/1648789#answer-1865866

HI STEVE

Answer ID
1865865

Created

Rating
-4

URL
https://questions.llc/questions/1648789#answer-1865865