# A video streaming company offers two monthly plans.

Plan A: \$3 per video viewed, plus a flat rate of \$8 per month
Plan B: \$5 per video viewed and no additional flat rate

A. Write an inequality to determine when the cost of viewing n videos using Plan A is less than the cost of viewing n videos using Plan B.

Question ID
1648789

10

Created

Rating
5

Views
3,624

2042968

Created

Rating
4

1889316

Created

Rating
3

2059576

Created

Rating
3

1889077

Created

Rating
1

2034795

Created

Rating
1

2061181

Created

Rating
1

A: 8 + 3n
B: 5n

so, what's next?

1648886

Created

Rating
0

## To determine when the cost of viewing n videos using Plan A is less than the cost of viewing n videos using Plan B, we need to compare the costs of the two plans.

Let's denote the cost of viewing n videos using Plan A as A(n) and the cost of viewing n videos using Plan B as B(n).

For Plan A, the cost per video viewed is \$3. Therefore, the cost of viewing n videos using Plan A is 3n. Additionally, there is a flat rate of \$8 per month, regardless of the number of videos viewed. Therefore, the total cost of viewing n videos using Plan A is A(n) = 3n + 8.

For Plan B, the cost per video viewed is \$5. Therefore, the cost of viewing n videos using Plan B is 5n. Since there is no additional flat rate, the total cost of viewing n videos using Plan B is B(n) = 5n.

To determine when the cost of viewing n videos using Plan A is less than the cost of viewing n videos using Plan B, we can set up the following inequality:

A(n) < B(n)
3n + 8 < 5n

Simplifying the inequality:

8 < 2n

Dividing both sides by 2:

4 < n

Therefore, the inequality to determine when the cost of viewing n videos using Plan A is less than the cost of viewing n videos using Plan B is n > 4.

4071586

Created

Rating
0

1865866

Created

Rating
-1