## No worries, I can explain it to you step by step.

First, you correctly calculated the cartesian components of the total force, which is F = 4i + 4j.

To find the acceleration, you can use Newton's second law, F = ma, where F is the total force and m is the mass of the particle. In this case, the mass is 1 kg.

So, you have F = ma, and you already have F = 4i + 4j. Now, divide both sides of the equation by the mass, m = 1:

4i + 4j = a(1)

This gives you the acceleration vector a = 4i + 4j.

To find the position of the particle after 1 second, you can use the equation of motion:

New position = old position + initial velocity * time + (1/2) * acceleration * (time^2)

Since the particle is initially at rest, the initial velocity is 0, so that term becomes 0.

So the equation becomes:

New position = old position + (1/2) * acceleration * (time^2)

Plugging in the values, old position = 2i + j, acceleration = 4i + 4j, and time = 1, you can calculate the new position:

New position = (2i + j) + (1/2)(4i + 4j)(1^2)

Simplifying the calculation:

New position = 2i + j + 2i + 2j

New position = 4i + 3j

Therefore, the new position of the particle after 1 second is given by the vector 4i + 3j.

I hope that clarifies it for you! Let me know if you have any further questions.