The figure below presents the EQE of a triple junction solar cell with junctions A, B and C under short circuited (V = 0 V) condition.

a) What is the bandgap (in eV) of the absorber layer of the junction A?

b) What is the bandgap (in eV) of the absorber layer of the junction B?

c) What is the bandgap (in eV) of the absorber layer of the junction C?

d) Which of the following statements is TRUE?

1)Junction C acts as the top cell, Junction B as the middle cell, and Junction A as the bottom cell.

2)Junction B acts as the top cell, Junction C as the middle cell, and Junction A as the bottom cell.

3)Junction A acts as the top cell, Junction B as the middle cell, and Junction C as the bottom cell.

Each junction is illuminated under standard test conditions. Given the photon fluxes below, calculate the short-circuit current density (in mA/cm2) of each (separate) junction (A, B and C):

ϕ=9.3∗1020m−2s−1 for 300nm<λ<650nm

ϕ=8.4∗1020m−2s−1 for 650nm<λ<850nm

ϕ=1.4∗1021m−2s−1 for 850nm<λ<1250nm

e) Jsc of Junction A:

f) Jsc of Junction B:

g) Jsc of Junction C:

h) The Voc of each junction in V can be roughly estimated by the equation

Voc=Egap(J)2q=Egap(eV)2
where q is the elementary charge, Egap(J) is the bandgap energy expressed in Joules, and Egap(eV) is the bandgap energy expressed in eV. Assume a fill factor of FF=0.75. What is then the efficiency (in %) of the triple junction solar cell?

bandgaps:

a) 1.9
b) 1.46
c) 0.992

e) 10.4302

f) 12.1125
g) 17.9444

H. 17.022

d) Junction A top

Junction B middle
Junction C bottom

Que.4-- C

d) Junction A acts as the top cell, Junction B as the middle cell, and Junction C as the bottom cell.

Can you also give out the rest of the answers?? thanks

Someone has the others results please???

Hey guys i exchange the answers of this question with the assignment 5...

just let me know

hi

anyone have the answers to this Q

Add the missing figures please

None is true answer sorry

This is the link to the image

postimg org/image/fsra4o0h1/

The figure below presents the EQE of a triple junction solar cell with junctions A, B and C under short circuited (V = 0 V) condition.

EQE table is:

A: EQE = 0.7 wavelength= 300 to 650 nm
B: EQE = 0.9 Wavelength= 650 to 850 nm
C: EQE = 0.8 Wavelength= 850 to 1250 nm

a) What is the bandgap (in eV) of the absorber layer of the junction A?

b) What is the bandgap (in eV) of the absorber layer of the junction B?

c) What is the bandgap (in eV) of the absorber layer of the junction C?

d) Which of the following statements is TRUE?

Junction C acts as the top cell, Junction B as the middle cell, and Junction A as the bottom cell.
Junction B acts as the top cell, Junction C as the middle cell, and Junction A as the bottom cell.
Junction A acts as the top cell, Junction B as the middle cell, and Junction C as the bottom cell

TRIPLE JUNCTION SOLAR CELL - III
Each junction is illuminated under standard test conditions. Given the photon fluxes below, calculate the short-circuit current density (in mA/cm2) of each (separate) junction (A, B and C):

ϕ=9.3∗1020m−2s−1 for 300nm<λ<650nm

ϕ=8.4∗1020m−2s−1 for 650nm<λ<850nm

ϕ=1.4∗1021m−2s−1 for 850nm<λ<1250nm

e) Jsc of Junction A:

f) Jsc of Junction B:

g) Jsc of Junction C:

TRIPLE JUNCTION SOLAR CELL - IV
h) The Voc of each junction in V can be roughly estimated by the equation

Voc=Egap(J)2q=Egap(eV)2
where q is the elementary charge, Egap(J) is the bandgap energy expressed in Joules, and Egap(eV) is the bandgap energy expressed in eV. Assume a fill factor of FF=0.75. What is then the efficiency (in %) of the triple junction solar cell?

@foxman thinks

plz answer

e,f,g,h parts

Please answer e,f,g,h

d) Which of the following statements is TRUE?

1-Junction C acts as the top cell,
2-Junction B as the middle cell, and
3-Junction A as the bottom cell.
Junction B acts as the top cell, Junction C as the middle cell, and Junction A as the bottom cell. Junction A acts as the top cell, Junction B as the middle cell, and Junction C as the bottom cell.
Please help

To find the answer is pretty simple. E= h*c/λ*q

Where,
h is the planck's constant
c is the speed light in vacuum
λ is the wavelength
q is the elementary charge

a 1447

b.45
c.25