Find an equation of the tangent line to the curve at the given point.
- 👍
- 👎
- 👁
- ℹ️
- 🚩
-
- 👍
- 👎
- ℹ️
- 🚩
Answer this Question
Similar Questions
-
Calc AB
Suppose that f(x) is an invertible function (that is, has an inverse function), and that the slope of the tangent line to the curve y = f(x) at the point (2, –4) is –0.2. Then: (Points : 1) A) The slope of the tangent line to the curve y = f –1(x) at
-
Calculus
Suppose that y=f(x) = sqrt(2x), x>=0 Find a c > 0 such that the tangent line to the curve y = f(x) at x = c has the same slope as the tangent line to the curve y = f^–1(x) at x = c. You get: c = 1/8 c = 1/2 c = (1/8)^(1/3) c = (1/3)^(2/3) c = (1/2)^(1/3)
-
calculus
Find the slope of the tangent line to the given polar curve at the point specified by the value of θ. r=6/θ, θ=π
-
Calculus
Suppose the point (pi/3, pi/4) is on the curve sinx/x + siny/y = C, where C is a constant. Use the tangent line approximation to find the y-coordinate of the point on the curve with x-coordinate pi/3 + pi/180.
-
calculus
Consider the curve given by the equation y^3+3x^2y+13=0 a.find dy/dx b. Write an equation for the line tangent to the curve at the point (2,-1) c. Find the minimum y-coordinate of any point on the curve. the work for these would be appreciated i don't need
-
Calculus
4. Given ln(x/y) + y^3 - 2x = -1. A. Find the equation of the normal line to the curve ln(x/y) + y^3 - 2x = -1 at the point (1,1). (I got -2x+3) B. Find the equation of a tangent line to the curve y=e^(x^2) that "also" passes through the point (1,0). You
-
Equation of the Tangent Line
Find the equation of a line tangent to te curve xy = sqrt(xy - x) + 1 at the point (1, 2).
-
AP AB Calculus
Linear approximation: Consider the curve defined by -8x^2 + 5xy + y^3 = -149 a. find dy/dx b. write an equation for the tangent line to the curve at the point (4,-1) c. There is a number k so that the point (4.2,k) is on the curve. Using the tangent line
-
Calculus
Find a vector equation for the tangent line to the curve of intersection of the cylinders x^2 + y^2 = 25 and y^2 + z^2 = 20 at the point (3, 4, 2).
-
Calculus
Consider the curve given by x^ 2 +sin(xy)+3y^ 2 =C, where Cis a constant. The point (1, 1) lies on this curve. Use the tangent line approximation to approximate the y-coordinate when x = 1.01 .
Still need help?
You can ask a new question or browse existing questions.