Find the volume of the solid whose base is the region in the xy-plane bounded by the given curves and whose cross-sections perpendicular to the x-axis are (a) squares, (b) semicircles, and (c) equilateral triangles.
- 👍
- 👎
- 👁
- ℹ️
- 🚩
Answer this Question
Similar Questions
-
Math
Find the volume V of the solid obtained by rotating the region bounded by the given curves about the specified line. y = 8 sin x, y = 8 cos x, 0 ≤ x ≤ π/4; about y = −1
-
Calculus (Volume of Solids)
A solid has, as its base, the circular region in the xy-plane bounded by the graph of x^2 + y^2 = 4. Find the volume of the solid if every cross section by a plane perpendicular to the x-axis is a quarter circle with one of its radii in the base.
-
Calculus
The base of a solid in the xy-plane is the first-quadrant region bounded y = x and y = x^2. Cross sections of the solid perpendicular to the x-axis are equilateral triangles. What is the volume, in cubic units, of the solid? So I got 1/30 because (integral
-
Calculus
Find the volume of the solid formed by revolving the region bounded by the graphs of y = x^2, x = 4, and y = 1 about the y-axis. I'm supposed to use this equation right? piR^2-x^r^2. and then change y=x^2 to x=sqrty. That's all I got.
-
Calculus check
The functions f and g are given by f(x)=sqrt(x^3) and g(x)=16-2x. Let R be the region bounded by the x-axis and the graphs of f and g. A. Find the area of R. B. The region R from x=0 to x=4 is rotated about the line x=4. Write, but do not evaluate, an
-
Calculus volume stuff
Find the volume of the solid obtained by rotating the region bounded y = 16 x and y = 2 x^2 about y =0 Find the volume of the solid obtained by rotating the region bounded about the x-axis by y=4x^2, x =1, and y = 0 Find the volume of the solid generated
-
calculus
The base of a solid in the xy-plane is the first-quadrant region bounded y = x and y = x2. Cross sections of the solid perpendicular to the x-axis are equilateral triangles. What is the volume, in cubic units, of the solid?
-
calculus
Use the method of cylindrical shells to find the volume of the solid obtained by rotating the region bounded by the given curves about the x-axis. xy = 2, x = 0, y = 2, y = 4
-
calculus
Find the volume of the solid obtained by rotating the region bounded by the curves y = x^8, y = 1 about the line y = 5.
-
Calculus
Let R be the region enclosed by the graphs y=e^x, y=x^3, and the y axis. A.) find R B.) find the volume of the solid with base on region R and cross section perpendicular to the x axis. The cross sections are triangles with height equal to 3 times the
Still need help?
You can ask a new question or browse existing questions.