Ask questions and get helpful answers.

Find the length of the curve y=(1/(x^2)) from ( 1, 1 ) to ( 2, 1/4 ) [set up the problem only, don't integrate/evaluate]

this is what i did.. let me know asap if i did it right..

y = (1/(x^2))
dy/dx = (-2/(x^3))

L = integral from a to b for: sqrt(1+(dy/dx)^2)dx
L = integral from 1 to 2 for: sqrt(1+(-2/(x^3))^2)dx
L = integral from 1 to 2 for: sqrt(1+(-2/(x^3))(-2/(x^3)))dx
L = integral from 1 to 2 for: sqrt(1+(4/(x^6))dx


L = integral from 1 to 2 for: sqrt(1+(4/(x^6))dx
L = (deltaX/3)[ f(1) + 4f(1.1) + 2f(1.2) + 4f(1.3) + ... + 2f(1.8) + 4f(1.9) + f(2) ]
L = (0.1/3)[ sqrt(1+(4/1)^6) + 4sqrt(1+(4/1.1)^6) + 2sqrt(1+(4/1.2)^6) + 4sqrt(1+(4/1.3)^6) + 2sqrt(1+(4/1.4)^6) + 4sqrt(1+(4/1.5)^6) + 2sqrt(1+(4/1.6)^6) + 4sqrt(1+(4/1.7)^6) + 2sqrt(1+(4/1.8)^6) + 4sqrt(1+(4/1.9)^6) + sqrt(1+(4/2)^6) ]
L = (0.1/3)[720.937]
L = 24.031

  1. 👍
  2. 👎
  3. 👁
  4. ℹ️
  5. 🚩

Answer this Question

Similar Questions

  1. Economics

    What happens when production is inside the production possibilities curve? It is not possible for the production to move inside the curve. The production is not maximized, so some resources are unused. What does the slope of the production possibilities

  2. Calc. 3

    Let C be the curve of intersection of the parabolic cylinder x2 = 2y, and the surface 3z = xy. Find the exact length of C from the origin to the point (4,8,32/3).

  3. Calculus

    Suppose the point (pi/3, pi/4) is on the curve sinx/x + siny/y = C, where C is a constant. Use the tangent line approximation to find the y-coordinate of the point on the curve with x-coordinate pi/3 + pi/180.

  4. Math

    Find an equation of the curve that satisfies the given conditions: (d^2y/dx^2)=6x, the line y=5-3x is tangent to the curve at x=1

  5. maths sir steve help me reiny

    A curve has parametric equations x = at² , y = 2at. Find the area bounded by the curve, the x- axis, and the ordinates at t = 1 and t = 2 step plz

  6. calculus

    Find the area of the region that lies inside the first curve and outside the second curve. r = 1 + cos(θ), r = 2 − cos(θ)

  7. Math

    Find the exact length of the curve. x = 5cost - cos5t, y = 5sint - sin5t, 0 < t < pi

  8. calculus

    Consider the curve given by the equation y^3+3x^2y+13=0 a.find dy/dx b. Write an equation for the line tangent to the curve at the point (2,-1) c. Find the minimum y-coordinate of any point on the curve. the work for these would be appreciated i don't need

  9. Calc

    Find an equation of the curve whose tangent line has a slope of f'(x) =2x^-10/11, given that the point ​(-​1,-4​) is on the curve.

  10. maths

    A quadratic curve passes through the points (-2,0)and(1,0).Find the equation of the curve in the form ax^2+bx+c,where a,b and c are constants

Still need help?

You can ask a new question or browse existing questions.