Starting with F(x) = integral (2, x) 3t^2(cos (t^3) + 2) dt, use substitution u(t)=t^3 to rewrite the definite integral. You should get a new equivalent expression for F(x), which consists of this new definite integral.
 👍
 👎
 👁
 ℹ️
 🚩
1 answer

u = t^3
so t = u^(1/3)
du = 3 t^2 dt
so dt = du/3 t^2 = du /3u^(2/3)
if t = 2 , u = 8
if t = x, u = x^3 👍
 👎
 ℹ️
 🚩
Answer this Question
Related Questions

Calculus
Find the length of the curve correct to four decimal places. (Use a calculator to approximate the integral). r(t) = (cos π t, 2t, sin 2πt), from (1, 0, 0) to (1, 4, 0) This what I did. r'(t)=πsin(πt),2,2πcos(2πt)

math
You are given the four points in the plane a=(2,2), b=(1,3), c=(3,6), and d=(7,3). The graph of the function consists of the three line segments AB, BC and CD. Find the integral by interpreting the integral in terms of sums and/or differences of areas

calculus (please with steps and explanations)
consider the function f that is continuous on the interval [5,5] and for which the definite integral 0(bottom of integral sign) to 5(top of integral sign) of f(x)dx=4. Use the properties of the definite integral to evaluate each integral: (a) definite

Calc Help Please Again Last one!
Write out the form of the partial fraction decomposition of the function appearing in the integral: integral (6x58)/(x^2+2x63) Determine the numerical values of the coefficients, A and B, where A

Calculus
Evaluate the integral.[0,pi/4]∫( sec(t)tan(t)+ tcos(2t)j+ ((sin(2t))^2) *(cos(2t))k) dt

Calculus
Suppose the integral from 2 to 8 of g of x, dx equals 5, and the integral from 6 to 8 of g of x, dx equals negative 3, find the value of the integral from 2 to 6 of 2 times g of x, dx . 8 MY ANSWER 12 16 4

Calculus
Please help! ASAP 1. If the integral from 1 to 6 of f of x, dx equals negative 10 and the integral from 3 to 6 of f of x, dx equals negative 8, then what is the value of integral from 1 to 3 of f of x, dx? A. 2 B. 2 C. 18 D. 12 2. Use geometry to

Math
Evaluate the line integral SC F · dr, where C is given by the vector function r(t). F(x, y, z) = sin x i + cos y j + xz k r(t) = t^4i − t^3j + tk, 0 ≤ t ≤ 1

calc. trig substitution
s integral s 1/ [ (x^4) sq.rt(x^2+9)] i know x=3tanx sq.rt(x^2+9)= 3 secx dx= 3/[cos^2(x)] so far i know: = 1/ (3tan^4(x)) 3secx cos^2(x)) dx =1/ 81 [ (sin^4 (x)/cos^4 (x)) (1/cosx) (cos^2(x))] then i'm not really sure what to do next

Calculus
Which of the following integrals can be integrated using partial fractions using linear factors with real coefficients? a) integral 1/(x^41) dx b) integral (3x+1)/(x^2+6x+8) dx c) integral x^2/(x^2+4) d) None of these

calculus
consider the function f that is continuous on the interval [5,5] and for which the definite integral 0(bottom of integral sign) to 5(top of integral sign) of f(x)dx=4. Use the properties of the definite integral to evaluate each integral: (a) definite

Calculus
If f(x) and g(x) are continuous on [a, b], which one of the following statements is true? ~the integral from a to b of the difference of f of x and g of x, dx equals the integral from a to b of f of x, dx minus the integral from a to b of g of x dx ~the

selfstudy calculus
Sketch the curve with the given vector equation. Indicate with an arrow the direction in which t increases. r(t)=cos(t)I cos(t)j+sin(t)k I don't know what to do. I let x=cos(t), y=cos(t) and z= sin(t). Should I let t be any number and get the equal

math
Find the values of sin θ, cos θ, and tan θ for the given right triangle (in the link below). Give the exact values. www.webassign.net/aufexc2/85003.gif sin θ= cos θ= tan θ= my answer is c^2 = a^2 +b^2 c^2 = 5^2+12^2 c^2 = 169 c= √(169) c= 13 I

Quick calc question
The Riemann sum, the limit as the maximum of delta x sub i goes to infinity of the summation from i equals 1 to n of f of the quantity x star sub i times delta x sub i , is equivalent to the limit as n goes to infinity of the summation from i equals 1 to n

math
Can you please check my work. A particle is moving with the given data. Find the position of the particle. a(t) = cos(t) + sin(t) s(0) = 2 v(0) = 6 a(t) = cos(t) + sin(t) v(t) = sin(t)  cos(t) + C s(t) = cos(t)  sin(t) + Cx + D 6 = v(0) = sin(0) cos(0)

math
You are given the four points in the plane A=(−1,−8), B=(4,5),C=(8,−2), and D=(12,2). The graph of the function f(x)f(x) consists of the three line segments AB, BC and CD. Find the integral ∫12−1f(x)dx by interpreting the integral in terms of

calculus
Make a substitution to express the integrand as a rational function and then evaluate the integral. (Use C for the constant of integration.) 1/x{(x1)^1/2} dx

CALCULUS
A definite integral of the form integral [a, b] f(x)dx probably SHOULDN'T be used: A. (loosely speaking) to calculate "size in fourdimensional spacetime" (object's volume multiplied by its duration), by setting f(x)=V(x), letting x represent time, x=a

Calculus
Find the exact coordinates of the centroid. y = sqrt[x], y = 0, x = 9.  Is this basically 1/4 of an oval/ellipse? If so then the area would be: pi*9*3, correct? So the X coordinate would equal: 1/Area * Integral from 0 to 9 of (x*f(x))*dx
Still need help?
You can ask a new question or browse existing questions.