The sum of the digits of a 3-digit number is three times the sum of the digits of a 2-digit number. When the 2-digit number is subtracted from the 3-digit number it gave another 2-digit number of which its first digit is three times the first digit of the first 2-digit number. If the last digit of the 3-digit number equals the last digit of the second 2-digit number, and three times of the sum of the first and second digit of the 3-digit number equals the first digit of the second 2-digit number.

Find the 3-digit number if two times the first digit of the first 2-digit number equals the last digit of the 3-digit number and the sum of the first and second digit of the 3-digit number equals the first digit of the first 2-digit number and also two times the sum of the first and second digit of the 3-digit number equals the last digit of the second 2-digit number. Also the sum of all the digits of the three different number is 27. And the second 2-digit number is greater than the first 2-digit by 66. Finally when the digits of the second 2-digit number are interchanged it is 39 greater than the first 2-digit number.

I just need only the equation have been on this for weeks I feel helpless and tired help me

This sentence is incomplete.

If the last digit of the 3-digit number equals the last digit of the second 2-digit number, and three times of the sum of the first and second digit of the 3-digit number equals the first digit of the second 2-digit number.

also, if that's true, then what? Maybe you just meant

The last digit of the 3-digit number equals the last digit of the second 2-digit number, and three times of the sum of the first and second digit of the 3-digit number equals the first digit of the second 2-digit number.

Also, you say

Also the sum of all the digits of the three different number is 27

This can only be true if the first number is 999

So, ignoring all the bogus clues, I get that the two numbers are
126 and 30, and the 2nd 2-digit number is 96