Ask questions and get helpful answers.

A rational function, R(x) has the following characteristics:

a vertical asymptote at x = 3,
a horizontal asymptote at y = 2,
and a hole at (2, −2).

Sketch the function and determine what it could be using the following steps:

Put in the factor that would account for the vertical asymptote at x = 3.
Add in the factors that would account for a hole at x = 2.
Determine what must be true about the numerator and denominator for there to be a horizontal asymptote at y = 2.
Add the factors that would account for the horizontal asymptote at y = 2.
Describe what you must do in order for the hole to appear at (2, −2).
Write the completed function.

  1. 👍
  2. 👎
  3. 👁
  4. ℹ️
  5. 🚩
1 answer
  1. vertical asymptote at x = 3
    y = a/(x-3)

    horizontal asymptote at y = 2
    y = 2x/(x-3)
    y(2) = 4/-1 = -4
    so let's use
    y = 2(x-1)/(x-3)
    y(2) = 2/-1 = -2

    a hole at (2, −2)
    y = 2(x-1)(x-2) / (x-2)(x-3)

    1. 👍
    2. 👎
    3. ℹ️
    4. 🚩
    👤
    oobleck

Answer this Question

Related Questions

Still need help?

You can ask a new question or browse existing questions.