Ask questions and get helpful answers.

Over a 24-hour period, the temperature in a town can be modeled by one period of a sinusoidal function. The temperature measures 70°F in the morning, rises to a high of 80°F, falls to a low of 60°F, and then rises to 70°F by the next morning.



What is the equation for the sine function f(x), where x represents time in hours since the beginning of the 24-hour period, that models the situation?

stuck please help :/

  1. 👍
  2. 👎
  3. 👁
  4. ℹ️
  5. 🚩
1 answer
  1. the period is 24, so

    y = sin(π/12 x)

    The temperature varies between 60 and 80, so the center-line is y=70, and the amplitude is 10

    y = 10sin(π/12 x) + 70

    I don't know what time the temperature is 70, but if it's at 6 am, then the horizontal shift is 6 hours, meaning

    y = 10 sin(π/12 (x-6)) + 70

    see

    http://www.wolframalpha.com/input/?i=plot+y%3D10+sin(%CF%80%2F12+(x-6))+%2B+70,+y%3D70+for+0%3C%3Dx%3C%3D24

    1. 👍
    2. 👎
    3. ℹ️
    4. 🚩

Answer this Question

Related Questions

Still need help?

You can ask a new question or browse existing questions.