Consider the implicit equation 2xy-1=(x+y+1)^2
- 👍
- 👎
- 👁
- ℹ️
- 🚩
-
- 👍
- 👎
- ℹ️
- 🚩
-
- 👍
- 👎
- ℹ️
- 🚩
-
- 👍
- 👎
- ℹ️
- 🚩
-
- 👍
- 👎
- ℹ️
- 🚩
-
- 👍
- 👎
- ℹ️
- 🚩
Answer this Question
Similar Questions
-
calculus
let y=(x+sin(x))^2 f(x)=? g(x)=? (f o g)'=? compute the derivative using the chain rule
-
Calc
g'(x)=tan(2/1+x^2) Let g be the function with first derivative given above and g(1)=5. If f is the function defined by f(x)=ln(g(x)), what is the value of f'(1)? I know the answer is 0.311, but I need steps as to why. Please and thanks.
-
Calculus
The line that is normal to the curve x^2=2xy-3y^2=0 at(1,1) intersects the curve at what other point? Please help. Thanks in advance. We have x2=2xy - 3y2 = 0 Are there supposed to be 2 equal signs in this expression or is it x2 + 2xy - 3y2 = 0 ? I'll
-
Calc AB
Remember that f(x) must be one-to-one (only one y-value for each x-value) over the domain where f –1(x)is defined as a function. So, in some cases you must restrict the domain of f(x) so that it's one-to-one. There might be more than one section of
-
Calc AB
Suppose that y = f(x) = x^2-4x+4 Then on any interval where the inverse function y = f^–1(x) exists, the derivative of y = f^–1(x) with respect to x is: a) 1/(2x-4) b) 1/(2y-4), where x and y satisfy the equation y=x^2-4x+4 c)(1/2)x^(-1/2)
-
Math(Urgent)
Compute the maximum product for two positive numbers x and y with the property that the sum of the first plus five times the second is 5000. 1) Indicate the objective equation 2) Indicate the constraint equation So the objective = f(x)=xy and the
-
Math (Calculus) (mean value theorem emergency)
Consider the graph of the function f(x)=x^2-x-12 a) Find the equation of the secant line joining the points (-2,-6) and (4,0). I got the equation of the secant line to be y=x-4 b) Use the Mean Value Theorem to determine a point c in the interval (-2,4)
-
Calculus
A rectangle is bounded by the x-axis and the semicircle y = sqrt(36-x^2). What length and width should the rectangle have so that its area is a maximum? I understand that 2xy = A and that 4x + 2y = P, but I'm not sure how to solve for a variable to plug
-
Calculus
Suppose the derivative of a function f is f′(x)=(x−8)^7(x−1)^4(x+19)^8. Then the function f is increasing on the interval what?
-
calculus
Suppose f is a one-to-one, differentiable function and its inverse function f^−1 is also differentiable. One can show, using implicit differentiation (do it!), that (f^−1)′(x)=1 / f′(f^−1(x)) Find (f^−1)′(−6) if f(−1)=−6 and
Still need help?
You can ask a new question or browse existing questions.