At time t1 = 2.00 s, the acceleration of a particle in counterclockwise circular motion is (9.00i + 8.00j) m/s^2. It moves at constant speed. At time t2 = 3.00s (3/4 of a revolution later), it's acceleration is (8.00i - 9.00j) m/s^2. Find the radius of the path taken by the particle.

Constant speed implies no tangential acceleration. The acceleration is centripetal. So you know it has an angular velocity of displacement/time (solve that, you have the numbers above.)

magnitude acceleration= w^2 * r solve for r.

1 answer

  1. r = (9.00i + 8.00j) / (w^2)

    w = (t2 - t1) / (3/4)

    r = (9.00i + 8.00j) / (((3.00 - 2.00) / (3/4))^2)

    r = (9.00i + 8.00j) / (1.00/9.00)

    r = (9.00i + 8.00j) * 9.00

    r = 81.00i + 72.00j m

Answer this Question

Still need help?

You can ask a new question or browse more Physics/Math questions.